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I. Introduction

Estimation problems, and filtering among them, are basically concerned

with extracting the best information from inaccurate observation of signals.

Perhaps the earliest roots of this type of pr.Olems go back to the least

squares estimation at the time of Galileo Galilel In 1632 and Gauss in 1795.

The relatively modern and more general development of least-squares estimation

in stochastic processes is marked by the work of A.N. Kolmogorov and N. Wiener

in the 1940's. Most recently, and due to vast research and development of the

space age, the estimation theory experienced a new outlook. This was marked by

the work of P. Swerling in 1958 and 1959 in connection with satellite tracking,

and the work of R. Kalman using state space approach. Kalman's work [1] had the

impact of greatly popularizing and spreading the estimation theory in different

fields of applications. Also, works by Stratonovich and Kushner are among the

recent developments of the subject.
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From the control theory point of view, the problem of estimating

the state dynamical systems plays an important role. Very often the

optimal control law sought for a dynamical system is some sort of a

feedback of its state. Take for example the control of a chemicol process,

a nuclear reactor, maneuvering of a space craft, guidance and navigation

problems, and the problem of control and suppression of structural vibra-

tions. Also, sometimes, it Is of interest to know the state of a dynamic

system. Take for example the tracking of moving objects like satellites

in orbits, and enemy missiles. These are just a few examples of the appli-

cation of this knowledge.

Fundamentally, the conditional probability density of the state

conditioned on available observations holds the key for all kinds of state

estimators. The case of the linrear dynamical system, with measurements

linear in the state variables, in the presence of additive Gaussian noise,

and-under the assumption of full knowledge of the system parameters and noise

statistics, has been optimally solved. In that particular case, the condi-

tional probability density is Gaussian. A Gaussian density is characterized

by only two quantities, namely, its mean and covariance. Therefore, the

optimal linear filter has a finite state, the conditional mean and the condi-

tional covariance, and is widely known as the Kalman or the Kalman-Bucy filter

P3),'[2], [3], and [4]. The Kalman filter provides the minimum variance

unbiased estimates. Also, the filter structures is linear, its gain and

covariance can be processed independently of the estimate even before receiving

the observations. These features make the Kalman filter desirable and easy

to implement.

2
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Unlike the linear case, the situation for no "inear systtins is

completely different. The conditional probability •ensity Is vio longer

Gaussian even though the acting noise is itself Gaussian. In thi3 case

the evolution of the conditional probability density is governed by a stochastic

integral-partial differential equation, Kushner's equation, or equivalently

by an infinite set of stochastic differential equations for the moments of the

density function [3), [42], and [43]. Therefore, the truly optimal nonlinear

filter is of infinite dimensional ity, and consequently is of no practical

interest. Therefore, practical suboptimal finite dimensional filters are very

much needed.

Inspired by Kalman's results, a great deal of research effort has been

directed towards extending the linear results and developing practical schemes

for nonlinear filters. Developments have relied on two main approaches.

The first approach is based on the linearization of system nonlinearities

around a nominal trajectory using Taylor's ser 's expansion. Performing the

expansion up to the first order terms results in the linearized filter [3], and

[1l] The approach can further be improved by linearizing, again up to a first

order, about the most recent estimate. Relinearization is performed as more

recent estimates become available. By so doing the well known extended Kalman

filter (EKF), [3), is obtained. The Taylor's series expansion can be carried

O p to the second order terms. In this case, with some assumptions on the con-

ditional probability density function, second order filters are obtained.

Among these are the truncated second order filter, the Gaussian second order

filter, and the modified second order filter (M2-F). These second order filters

are presented in [3), and [11])

43



In the second approach the conditional probability density function is

approximated using several techniques. The Gaussian sum approximation is

used-in [33], and [34). In this case the conditional probability density is

approximated by a finite weighted sum of Gaussian densities with different

means and covariances. Since the Kalman filter is a Gaussian density synthe-

sizer, then the resulting Gaussian sum filter is actually a bank of Kalman

filters working in parallel. Each one is properly tuned In terms of system

parameters and its output is properly weighted and summed to other filters'

outputs to produce the state estimate. The approach has been used extensively

by many authors to treat the estimation problim of linear systems with unknown

parameters e.g. [35), [36), [37), [38), [39j, and [40]. Orthogonal series

expansion is also used to approximate the conditional probability density as

in [41]. Also, the idea of generating a finite set of moments to replace the

infinite set for the true density has been investigated in r44]. A more

detailed account and discussion of the above mentioned techniques is given by

the author In [61].

With all the above mentioned approaches for developing suboptimal finite

dimensional filters, still the task of theoretical assessment of such filters

in the sense of providing a measure of how far a suboptimal filter is from

being a truly optimal has remained very hard to achieve.

It inherits the very same practical difficult- of the optimal filter -

.Infinite dimensionality - that one is trying to avoid. Therefore, the support

of any such schemes has to rely heavily on computer simulation and for that

same reason not a single scheme can be claimed always superior, For example, in

4
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[113, the truncated second filter, the Gaussian second order filter, the

modified second order filter (M2-F), the extended Kalman filter (EKF),

and the linearized filter were considered in numerical simulation. The

linearized filter hid the poorest performance but no conclusion was evident

about which one of the other filters is superior. The EKF was favored for

its relative structure simplicity in comparison to the other filters. There.

fore, the final judgement is left to experience and the special case at hand.

Consequently, the development of new practical filters will add to toe list

of contributors,

The main theme of this chapter Is to consider the nonlinear filtering

problein from a different approach. The approach taken here is to consider

tho pr,'blem as the combination of approximating the system description and

solvin1 the filtering problem for the approximate model. As a result some

new schemes are developed. The problem formulation and the proposed solution are

given next followed by some numerical results.

5



1I. Problem Formulation:

Consider the general nonlinear dynamical system whose state x(t)

evolves in time according to the following differential equation,

dx(t) - [A(t) x(t) + f(x(t),t)] dt + Q0(t) dW(t) (1)

. t tS•' (to0) 0 x t to

"where

x(t) c Rn is an In' dimensional state vector.

A(t) is an 'nxn' real matrix.

f(x(t),t) is an In' dimensional vector valued real function.

. xo . Rr Is an In' dimensional Gaussian random vector (GRV) with

()a 70* (2)

and
Cov(xo,xo) a E ((xo - xo)(x -()') - (3)

W(t) t Rn is an In' dimensional Wiener process, and

dW(t) a W(t+dt) - W(t). Therefore,

E (dW(t)) a o for all t t (4)

and

Cov(dW(t),dW(t)) ! E (dW(t) dW'(t)) - (Idt) (5)

Where I is the (nxn) unit matrix.

0Q(t) Is a real matrix, and

Q(t) (OQ(t) QOj(t) is a positive semidefinite (nxn)

matrIx,
71MJ denotei-the expected value of (.)
f Coy(.,.) denotes the covariance of(.).

6
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Also, consider the observations process dy(t) to be given by

dy(t) E [CMt) x(t) + h(x(t),t)3 dt + Rh(t) dv(t) (6)

where

dy(t) Rm is an 'Im' dimensional observations vector.

C(t) is an 'mxn' real matrix.

h(x(t),t) is an 'Im' dimensional vector valued real function.

v(t) c Rm is an 'm' dimensional Wiener process, and

dv(t) - V(t + dt) - V(t). Therefore,

E (dv(t)) - o for all t ta (7)

and

Cov(dv(t), dv(t))ik E (dv(t) dv'{t) )- (Idt) (8)

Rh(t) is a real matrix, and

R(t) A Rk(t) Rh(t) is a positive definite (nxn) matrix

We assume that x0, w(t), and v(t) are all independent of each other

for all values of tzt 0 . Also, the assumption that equation (1) satisfies

the conditions for existence and uniqueness of solution given in

[3), [23], and [57] is being made. This means that our

dynamical system (1) admits only one solution x(t),t >t0 to be its state

trajectory in the mean square sense. Furthermore, It is assumed that

both f(x(t),t) and h(x(t),t) are continuous In x(t).

As it is noticed from equations (1), and (6), the system structure

is considered to be composed of two parts, a linear part plus a non-

linear part. Furthermore, we assume that the system behavior is dominated

by its linear part, That is to say,
11f(x(t),t)Jl < 11 A(t)x(t)JJ (9)

7
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and

llhW06t)t) II < 11 cMtxMtIl (10)

where

JlzJl is the norm of the vector z.

Equations (1) and (6) along with conditions (9) and (10) can be the

original system's description, what is sometimes referred to as system

with conebounded nonlinearities. Also, it can-be a representation

obtained by linearization of a nonlinear system, where f(x(t),t)

and h(x(t),t) represent second and higher order terms. In this case

conditions (9) and (10) are valid as long as the system state x(t)

remains within a small neighborhood of the nominal (linearizing)

trajectory.

Accordingly, conditions (9), and (10) suggest that for a good guess of

the system state x*(t) the following approximate equations for the

dynamics and observations can be written as

dxl(t) -[A(t) Xl(t) + f(x*(t),t) ] dt + Qh(t) dw(t) (11)

dy(t) - (C(t) x1(t) + h(x*(t),t) ] dt + Rh(t) dv(t) (12)

By virtue of continuity of the nonlinearities in x(t), we should note

"the following. As x*(t) approaches x,(t), the approximate description

given in (11), and (12) approaches the true description in (1), and (6).

In fact, the following equation

dx,(t) -[A(t)x 1 (t) + f(x1(t),t) ] dt 4 Q (t) ds(t).

X(t 0 Xo, tZto (13)

i' I ... I. . I I "4 *'4 4 I* 4' i .4-' .. i. I I "4, "4l



,ind en.uation (1) have the same solution both in the mean square sense

and with probability one.

Thus follows, the filtering problem of th, system (1), (6) can be

considered as a unification of model approximation and state estiffation

of the approximate model. In other words, first we approximate the

system description by finding a suitable x*(t). Then, solve the optimal

filtering problem of the approximate model. The optimal filtering is

basically to seek the minimum mean square error estimate of the state

x(t) based on the available observations, Y u1y(s). ys-!t).

~4. Generally, according to theorem (6.6) of [3] pp. 184
4.4'and its specialization to linear systems, theorem (7.3) pp. 219 of the
;4.4same reference, the optimal filter imitates the dynamics of the system

an~d is linearly driven by the net observations. Therefore, guided by

these results, we will seek the optimal filter for the system in (11) and

(12) as a linear dynamic system driven linearly by the net observations.
The optimality of the filter is in the sense of achieving minimum mean

square error.

so, if we define the estimation error e1(t) as

and the covariance matrix P(t) as

*Where i1(t) is an estimate of x1(t) based on Yt* and

* 11(t) 4 C {e,(t)) * (6

C' then,

otr(P(t)) +tr(fi(t) if(tY) 17
is to be minimized.

A'9
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III. Proposed Solutions:

A•.Derivation of The (El-F) Filter:

According to the approximate model in equations (11) and (12),
the minimum variance unbiased estimate X1 (t) is given by a Kalman filter
which has the following expression

dxl (t) - [A (t)xl(t) + f(x*(t),t)] dt + K't)[dy(t)

-C(t)Al(t)dt - h(x*(t), t)dt]

Ao

1 (t,) 0 0

K(t) - P(t)C'(t)Rl(t) (18)
dP(t) * [A(t)P(t) + P(t) A'(t) - P(t)C'(t)R'(t)c(t)P(t)

+ Q(t)] dt

P(to) •P
0 0

A well known property of the Kalman filter is that xl(t) is the
conditional expectation of xl(t) given the measurements Yt, i.e.

1l(t) =E Y{xl(t))
t

10



According to the argument following equations (11) and (12), x*(t)

is required to provide the optimal solution of the following minimization

problem.

min J(x*(t))- E t i(x(t) x*(t)) (Xl(t) - x*(t))} 05)

x*Wt)

then for every t t to set, ag aJ(x (t))/fx (t) - o we get

X *(t)m- E Yt x 1(01 - ;l(t) (20)

Therefore, combining the results of equations (18), and (20) we get

the following filter, to be denoted as the (El-F) filter,

namely,

-- di Wt) A(t)x^ (t) +f~x' (tlgt )dt + Kit) Idy(t)

i ~~-C(t) X^ (t) dt -h(; (t),t) dr I x (t) "Xo(

K(t) - P(t)C(t)R' (t) (22)

r 1
dP(It) A(t)P(t) + P(t)A'(t) - P(t)C'(t)R'l(t)C(t)P(t) +Q(t dt

P(t ) P0  (23)

It is straightforward to recognize that in case of a linear system,

i.e. f(x(t),t) and h(x(t),t) are identically zero or only functions of

time, equations (21), (22) and (23) reduce to the well known Kalman

filter.

11



The extended Kalmian filter (EKF), L31

(1) and (6) is given by the following equations.

t
d2(t) * A(t)^X(t).f(AX(t),t)]dt + K(t) [dy~t)-

A A
CPt [(t) X f~((t),dt) - P((t),tdj + (t) EAt (4)t

K~) P(t) * Q(t)) + t h ~ Omm P0 M6

xxt

A A

A~ b(x(t),t) 4 tjt) At

IF (X~). 02

~~ 8.*X4Qt. A , ~ ~ . ~ . : .



"•I The (El-F) bears a close relationship with the extended Kalman

.,filter (EKF). The equations for the state estimate of both the
1 .(El-F), and the (EKF), equations, (21) and (24), have the same structure.
While the equations for the gain and covariance of the (El-F), equa-
tions (22) and (23), are different from those for the (EKF), equations

(25) and (26). Equations (22) and (23) are no longer state estimate
dependent. Thus, unlike-the (EKF), the gain and covariance for the

(El-F) can be processed off line and prior to receiving the observations
like the Kalman filter (KF). Therefore, the El-F will be of advantage
over the EKF when on line computations of the gain and covariance are
not affordable due to capacity limitations of on line computers. This

is usually the case of airborn and spaceborn computers.

Furthermore, while the (EKF) has to be strictly interpreted in the
Itosense, [62]. it Is not the case with the (El-F). This is so because

the gain K(t) as given by equation (22) is not estimate dependent.

1'
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B. Numerical Experiment for (EI-F):

The Van der Pol oscillator is chosen to compare the following

"filters, (El-F), (0F), and (EKF). The Van der Pol oscillator is charac-

* terized by the following differential eauation, [24].

S(t) - cA(t)(l - x2(t)) + x(t) o (27)

which describes a dynamical system with state dependent damping coefficient

.equals - c(l-x 2 (t)) where e is a positive parameter. The damping in

the system goes from negative to zero to positive values as the value

of x2 (t) changes from less than to greater than unity. The oscillator's

response is characterized by a limit cycle in the x(t), i(t) plane (the

phase plane). The limit cycle approaches a circular shape as c becomes

very small, it has a maximum value for x(t) equals 2.0 irrespective of

the value of c. This type of oscillations occur in electronic tubes

N which exhibit also what is known as thermal noise. Denoting x(t) as

XY(t), and i(t) as x2 (t), equation (23) can be rewritten in a state

space formulation. Also, considering th3 existence of some noise

forcing on the system, we get the following representation for the

Van der Pol oscillator.

* rdxl(t) 0 r XI(t) 0J dt+ 2 dt +

',•H "dW1 (t)l

j~.½ IdW 2(t)

41
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Also suppose that the following measurement is taken

dy(t) [x1(t) + X3 (t )] dt + R0 dv(t) (29)

In (24) and (25) above (Wl(t) W2 (t)]T is considered to be a two

dimensional Wiener process. Also, V(t) is a one dimensional Wiener
• I. process. R is a positive nonzero real value, and Q is a (2x2) matrix.-

The following values for noise statistics are considered,

Case 0 vI Ol R figures
* - -I... - _ ,

Van der Pol I U.5 0.0 0.5 4.0 1 to 2-- * -- - - -... -.-. .

Van der Pol 2 5.0 2.0 5.0 10.0 3 to 4

Also c is taken to be 0.2

In the figures, the following symbols are used.

XI =- the ith state, I - 1, 2
.1 * XIK = the estimate of the i- state provided by the (K-F)
-e.svt

'I XIE a the estimate of the ith state provided by the (El-F)
k! AIEK the estimate of the thstate provided by the (EKF'•

In both cases; as indicated hy figures 1, 2, 3, and 4, both the (El-F)
and (EKF) provide very accurate tracking of the system's states while

the (KF) provides crude estimates.

I15
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FIGURES CAPTIONS

Figure'l. First state and estimate by Kalman, El, ExtendedKalman filters.

"Figure 2. Second state and estimates by Kalman, El, Extended
Kalman filters.

Figure 3. First state and estimates by Kalman, El, Extended
Kalman fitlers..

Figure 4. Second state and estimates by Kalman, El, Extended
Kalman filters.
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C. Derivation of the F2-Fand the E2N-F filters

We have

as our approximate model for soume given good guess of the system state

Then we seek a filter which is a linear dynamic system, linearly

driven by the available observations as foll~ows

dIIt I' ''l' dt + K(t) dy(t) (32)

where

B(t) is an 'nxnl matrix and K(t) Is an Inxm', the filter's

* gain matrix.

I In order to evaluate the accuracy of this filter in estimating the

state x1(t)v we define the estlimation error e I(t) as

19



". "el(t) 6= M xlt l(t) (33)

Therefore from 00 ), (31), and (32) we get

de l(t)• [(A(t) -K(t) C(t) -B(t)) xl(t) + B(:t) e l(t)

+ f(x*(t),t) - K(t) h(x*(t),t)1 dt

+ Qk(t) dw(t) -K(t) Rk(t) dv(t),

'~~ ,0 e(t)=x- 1 (to) r04)

It is desirable to have the estimation error independent of the

state. In this case large state variables can be estimated as accurate

as small state variables.

Therefore, we may choose

B(t) w A(t) - K(t) C(t). (35)

Hence, the dependence of the estimation error on the state is eliminated.

Also, the initial minimum variance estimate is the mean of the initial

state ,t0'

4 Therefore,

I1 (t 0 ) ;x0  (36)

20'



Hence, equation (34) reduces to

de 1(t) [ ((A(t) - K(t) C(t)) el(t) + f(x*(t),t)

* - - K(t) 4(x*(t),t)] dt + Q0(t) dw(t)

- K(t) R0(t) dv(t), e(tO) " - (c (37)0 t e fo

Accordingly, the equation for the mean value of the error el(t) is

as follows.

dei(t) -[(A(t) - K(t) C(t)) el(t) +' f(x*(t),t)

- K(t) h(x*(t),t)] dt, il(to) =o (38)

It is clear that equation ( 38) above, due to the term

[f(x*(t),t) - K(t) h(x*(t),t)], will have a non zero solution, i.e.

l(t) =- E(el(t)) # o (39)

"Hence our estimate is biased unless the term [f(x*(t),t)

K(t) h(x*(t),t)] is identically equal to zero for all values of
.vt Z t 0to

"From equations (37) and (38) above, we have

-- i

A -de.(t) - i'l'(t)-a [A(t) - Kit) C(t)] (e(t) -ue(t)) dt

+ Q2(t) dw(t) -K(t) R'k(t) dv(t),

el(to) - el(to) -xo " c, (40)

.'I
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By definition the covariance matrix P(t) is

Pit) = E{(e.l(t) - •i(t)) (el(t) - el(t))O1 (41)

Therefore, straight forward mathematical manipulations show that P(t)

is given by the following differential equation.

"dP(t) [(A(t) - K(t) C(t)) P(t) + P(t) (A(t) - K(t) C(t))-

+ Q(t) + K(t) R(t) K(t)] dt, P(to) P0  (42)

Next, we seek the gain K(s), to <- s s< t that will provide the minimum

mean square error. Therefore we formulate the following optimizatiorn

problem

sm)n tr(P(t)) [f(x*(s),s) - K(s) h(x*(s),s)] [f(x*(s),s): K(s) Iot

- K(s) h(x*(s),s)] ds (3)

Subject to the constraint given by (42).

This can be rewritten as the following minimization problem,

mi r(As - K(s) C(s)] P(S) 4+ P(S) [A(s) - K(s) C(s)]'K(s) f t
?! ~ ~to<stO

+ K(s) R(s) K'(s) + [f(x*(s),s) - K(s) h(x*(s),s)j.

[f(x*(s),s) - K(s) h(x*(s).s)]') ds (44)
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The integrand in (44) is a convex quadratic in K(t). According to

the theory of calculus of variations, 119], the. minimizing K(s), to s t is

given as the solution of the Euler's equationwhich reduces to a

simple algebraic equation in the present case, inamely

tr([A(t) - K.C(t))P(t) + P(t)[A(t) - K(t)C(t)]J

* + K(t)R(t)K'(t) + rf(x*(t),t) - K(t)h(x*(t),t)J [f(x*(t),t)

- K(t)h(x*(t),t)]J) a o (45)

"Using the concept of gradient matrices and the formulae developad in

[52], we get

a- r{ tr(K(t)C(t)PKt)) • P(t)C'(t) (46)

- tr(Px*C'(,t)K')) - (t),t)h(47)

}2•-(-a tr(K(t)R~t)K°(t)) =2K(t)R(t) 14-8

S~Andi,

•i • tr ([f(x',(t),,t) - K'Itlhlx*(t),t)] [f(x*(t),t)

-K(t)h(x*(t),t)]') • - 2f(x*(t),t)h'(Y.*(t),t)

+ 2K(t)h(x*(t),t) h*(x*(t),t) (49)
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Substituting (46), (47), (48), and (49) in (45) above, the optimal
S

gain is found to satisfy the following equation.

K(t) [R(t) + h(x*(t),t) hA(x*tt),t)) - P(t)C'(t)

+ f(x*(t),t)ho(x*(t),t)

(50)

Therefore, the solution to the filtering problem, of the "approximate

model is given by

d t (t) t) •l(t) dt ' K(t) (dy(t) - C(t) AX(t) dt)

i (to)" ;x

K(t) [ (P(t)C-(t) + f(x*(t),t) h*(x*(t),t)] • (51)

[R(t) + h(x*(t),t) ho(x*(t),t)]"l

. dP(t) [ ((ACt) - K(t) C(t)) P(t) + P(t) (A(t) -K(t) C(t))'

+ Q(t) + K(t) R(t) KI(t)] dt, P(to} = P

It is clear that the inverse in the gain equation (50) exists because

, Rl(t) is a positive definite matrix and h(x 1 (t),t) h'(x*(t),t) is always

a positive semidefinite matrix.

"Although the bias term [f(x*(t),t) - K(t) h(x*(t),t)) has been mini-

mized, by choosing the gain K(t) according to (0 it is not
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identically zero. The bias can be eliminated by modifying the state

esti'nate equation such that the filter will be as follows.
-- i

4.1(t) (A1t) 91(t) + f(x*(t),t)] dt

+ K(t) [dy(t) - (C(t) 'l(t) + h(x*(t),t)) dt]

Xl (t)

K(t) - [Pit) C°(t) + f(x*(t),t) h'(x*(t),t)] (52)

S[R(t) + h(x*(t),t) h-lX*(t),t)-

,,• dP(t) [(A(t) - Kit) Clt)) P(,t)

+ P(t) (A(t)- K(t) C(t) )

+ Q(t) + K(t) R(t, KOtI dt, P(to) 0 P0

f'q4

Next, the guessed nominal trajectory x.*(t) Is to be updated

optimally in a sense to drive it as close as possible to xl(t). Hence,

the following minimization problem is formulated.

x*(t) J(x*(t)) v Ey {(xI(t) - x*(t));(xl(t) - X*(t)

Then for every t t to setting DJ(x*(t))/ax*(t)- o we get

X*(t)- Eyt (X (t)) X I (t) (54)S" E~t

ft'l
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Now, by combining the results in (51) and (54) we obtain the (E2-F)
, - ,filter as follows.

,' "d(t) At) R(t) dt + K(t)] C(t) X(t)]dt

K~) [p~t) C_(t) + f(Al(t),t h_(Al(t) ,t)

[R(t) + h(Axl(t).t) h'•~)t]l(55)

+ K(t) R(t) l'(t) + Q(t)] dt

P(t 0) 0P

And, by combining the results in (52) and (54) we obtain the (E2N-F)

filter as follows
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dxl(t) -[Aft) ýl(0)÷f(ýlt)t)] d
+ Kit) [dy(t) - (C(t) ý1(t)
+ h1(t)llt)) tit]

A
-Xl(to) u .

K~)=[p(t) C_(_) + f(Alt,)h(lt,)

[R~t) h I ( 0) t) o ^ ,(ot)]"(6

[ t)+ h (Xl(),) At56

dP(t) =[(A()- Kit) CMt) Pit) + P(t) (Aft) -Kit) C(t))"

+ K(t R(t) K-lit) + Q(t)] dt

:!Plto 0 PO 0

"Few points should be mentioned in commenting on the results given by the

equations in (55) and (56).. It is. easy to recognize that both the

"(E2-F) and the (E27.F) will reduce the standard Kalman filter (KF)

when there is no nonlinearities -In/t e system structure. The (E2-F)

has a linear structure for the statr/ estimate equation. But, the

gain matrix K(t) and the covariaoce 6natrix P(t) for both filters in

(55) and (56) are state estimate dependent, a common feature in many

of the suboptimal nonlinear filters. The results indicate that the

measurement nonlinearities have an effect on the filter gain 'similar

to adding to the measurement noise by increasing its covariance. On

the other hand both the dynamics and the measurements nonlinearities

have a combined effect similar to Pit) C'(t). If there is no
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measurements nonlinearities (h(x(t),t)-- 0) then the fE2-F) will reduce

to the standard Kalman filter (KF) without compensating for the dynamics

* nonlinearities, while (E2N-F) will reduce to the (El-F) given by equations

(21)(22) and(23)

D. NUMERICAL EXPERIMENTS FOR (E2-F). and E2N-F):

As before the Van der Pol Oscillator is chosen to compare the following

filters. (E2-F), and (KF) in one experiment; and (E2N-F), (EKF), and (M2-F)

in the second experiment.

The following values for noise statistics are considered.

Case# .Ql Q12 Q22. R Figures

Van der Pol 1 0.5 0.0 0.5 4.0 5 through 8

Van der Pol 2 5.0 0.0 5,0 10.0 9 through 12

Van der Pol 3 10.0 0.0 10.0 20.0 13 through 16

As before c is taken to be 0.2
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the following sy~nbols are used.

XI the I th state, I * 1, 2

XIK the estimate of the i th state provided by the (K-F)

MIE E i It "t H the (E2-F)

MXEN E " "t H " i to " the (E2N-F)

XIEK "1 " W V "the (EKF)

XI• " ~" the (M2-F)
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Figure Captions

Figure 5. First state and estimates by Kalman and E2 Filters.

Figure 6. Second state and estimates by Kalman and E2 Filters.

Figure 7. First state and estimates by Extended Kalman, E2N, and
mndified second order filters.

Figure 8. Second state and estimates by Extended Kalman, E2N, and
modified second order filters.

Figure 9. First state and estimates by Kalman and E2 Filters.

Figure 10. Second state and estimates by Kalman and E2 Filters.

Figure 11. First state and estimates by Extendel Kalman, E2N, andmodified second order filters.

Figure 12. Second state and estimates by Extended Kalman, E2N, and
modified second order filters.

Figure 13. First state and estimates by Kalman and E2 Filters.

Figuri 14. Second state and estimates by Kalman and E2 Filters.

Figure 15. First state and estimates by Extended Kalman, E2N, and
modified second order filters.

Figure 16. Second state and estimates by Extended Kalman, E2N, and
modified second order filters.
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From the previously displayed sets of results the following can be

pointed out. Ini the first two sets of results, Van der Pol I and Van der

Pal 2 the (E-F) provides a better tracking of the systemi states than the

-(K -r'). This is evident from ffgures 5, 6, 9. and 10. It is clear that

the (E2N-F) has accuracy similar to that of the (EKF) which is better than

the (M2-r) as indicated by figures 7, 8, 11, and 12. In the third set of

results, Van der Pol 3 figures 13 through 16 the noise level is high enough

to cov~er the effect of the system vnnlinearitfes. Therefore, all filters

except the (M2-F) have similar performance~. The (M2-F) is badly degraded

and provides a cveude estimate of the system state.

.4
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IV. CONCLUSIONS:

L~*h nonlinear filtering problan~is treated using a new approach.

The approac~h 'consists of unifying a system model approximation technique

with the filtering solution based on the approximate model. As a'result~several

filters are developed.

The first filter (El-F) structurally fits into the gap between the Kalman

(KF) and the extended Kalman (EKF) filters. On one hand it enjoys the same

ý,computational facility enjoyed by the Kalman filter, namely, the off-line
computations of its gain matrix. And on the other hand it provides state

estimates on the same 'level o? accuracy as provided by the extended Kalman

filter. Therefore, in this sense the (El-F) provides a missing link between

(IKF) and (EKF).

The other two filters are referred to as the (E-F) and the (E2N-F). The

state e3timate provided by the (E2-Fj has a structure like

(Kr) while that of the (E2N-F) has a structure like the (EKF). Both filters

have P~ew formula for the gain which provides further insight into the effects

of the system nonlinearities. Specifically, measurements nonlinearities have

the effect of increa.ing the measurements noise level. Moreover, the dynamics

nonlinearities, and also~ the measurements nonlinearities have a combined effect

s .ir'ilar to the P(t)C'(t) term In the Kalmani filter.

In comclusio,., the contribution of this chapter Is in providing three new

practically Implementable filters for stochastic dynamic systems which include

nonlinw,erities in their structure.
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